Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

1-Phenyl-3-(1H-1,2,4-triazol-1-yl)propan-1-one hemihydrate

Jun Wan, ${ }^{\text {a }}$ Chun-Li Li, ${ }^{\text {b }}$ Xue-Mei Li, ${ }^{\text {b }}$ Shu-Sheng Zhang, ${ }^{\text {b }} *$ Hong Xu^{a} and Ping-Kai Ouyang ${ }^{\mathrm{a}}$
${ }^{\text {a }}$ College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, 210093 Nanjing, Jiangsu, People's Republic of China, and ${ }^{\mathbf{b}}$ College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, People's Republic of China

Correspondence e-mail: shushzhang@126.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.045$
$w R$ factor $=0.123$
Data-to-parameter ratio $=11.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

In the title compound, $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$, the dihedral angle between the two aromatic rings is $87.12(10)^{\circ}$. The molecules are linked into chains along the c axis by intermolecular $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds. The chains are interlinked into a twodimensional network by $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving the water molecule, which lies on a twofold rotation axis.

Comment

In our ongoing studies of triazole compounds, we have synthesized the title compound, (I). An X-ray crystallographic analysis was undertaken to establish the structure.

(I)

The bond lengths and angles in (I) (Fig. 1 and Table 1) are within normal ranges (Allen et al., 1987) and comparable with those in 1-(4-methoxyphenyl)-3-(1H-1,2,4-triazol-1-yl)-propan-1-one, (II) (Wan et al., 2005). In contrast to the planar configuration of (II), the molecule of (I) is non-planar. The two aromatic rings are almost perpendicular to one another, with a dihedral angle of $87.12(10)^{\circ}$. There is an intramolecular hydrogen bond, $\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O}$, forming a five-membered ring. Glide-related molecules are linked into chains along the c axis by intermolecular $\mathrm{C} 11-\mathrm{H} 11 \cdots \mathrm{~N} 3^{\text {iii }}$ interactions (for symmetry code, see Table 2). The water molecules, which lie

Figure 1
The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Received 25 April 2005 Accepted 27 April 2005 Online 14 May 2005

Figure 2
A view of (I) down the b axis. Hydrogen bonds are indicated by dashed lines.
on twofold rotation axes, act as both donors and acceptors, connecting the chains into a two-dimensional network (Fig. 2). The packing is further stabilized by $\pi-\pi$ interactions involving the triazole ring; the triazole rings at (x, y, z) and $(1-x,-y$, $1-z$) are stacked with a centroid-centroid separation of 3.516 (2) Å.

Experimental

The title compound was prepared according to the literature method of Shi et al. (1996). Colourless single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetatepetroleum ether (1:1 v/v) solution over a period of two weeks.

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=210.24$
Monoclinic, C2/c
$a=25.429(9) \AA$
$b=8.209(5) \AA$
$c=10.502(6) \AA$
$\beta=95.595(9){ }^{\circ}$
$V=2181.9(19) \AA^{3}$
$Z=8$
$D_{x}=1.280 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2225
reflections
$\theta=2.6-25.5^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate, colourless
$0.44 \times 0.25 \times 0.09 \mathrm{~mm}$

Data collection

Bruker SMART 1000 CCD areadetector diffractometer ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.962, T_{\text {max }}=0.992$
5789 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.123$
$S=1.05$
2141 reflections
189 parameters
All H-atom parameters refined

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0554 P)^{2}\right. \\
& \quad+0.7904 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.16 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.18 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected bond lengths (\AA).

N1-C11	$1.320(2)$	C10-N3	$1.309(2)$
N1-N3	$1.3557(19)$	$\mathrm{C} 10-\mathrm{N} 2$	$1.348(2)$
N1-C9	$1.457(2)$	$\mathrm{C} 7-\mathrm{O} 1$	$1.213(2)$
C11-N2	$1.317(2)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1 $W-\mathrm{H} 1 W 1 \cdots \mathrm{~N} 2^{\mathrm{i}}$	$0.89(3)$	$2.03(3)$	$2.920(2)$	$176(3)$
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O} 1$	$0.94(2)$	$2.44(3)$	$2.776(3)$	$101(2)$
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{O} 1 W^{\text {ii }}$	$0.95(2)$	$2.42(2)$	$3.364(3)$	$173(2)$
C11-H11 $\cdots \mathrm{N} 3^{\text {iii }}$	$0.91(2)$	$2.54(2)$	$3.442(3)$	$170(2)$
Symmetry codes: (i) $1-x, y, \frac{3}{2}-z$; (ii) $1-x, 1-y, 1-z ;$ (iii) $x,-y, \frac{1}{2}+z$				

All H atoms were located in difference Fourier maps and refined isotropically. The $\mathrm{O}-\mathrm{H}$ distance is 0.88 (2) \AA and $\mathrm{C}-\mathrm{H}$ distances lie in the range 0.92 (3) -0.98 (2) \AA.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

This project was supported by the Program for New Century Excellent Talents in University (No. NCET-04-0649), the Project of Educational Administration of Shandong Province (No. J04B12) and the Outstanding Young-Adult Scientific Research Encouraging Foundation of Shandong Province (No. 03BSO81).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Shi, Y. N., Yang, Y., Fang, J. X. \& Lu, W. S. (1996). Chem. J. Chin. Univ. 17, 1578-1582.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Wan, J., Li, C.-L., Li, X.-M. \& Zhang, S.-S. (2005). Acta Cryst. E61, o307-o308.

